Chronic Myeloid Leukaemia (CML): Overview

March 2007
Introduction

Objective: To provide an overview of chronic myeloid leukaemia (CML), including relevant biology, epidemiology, pathophysiology, clinical presentation, and current treatment approaches.

Topics covered in this slide module
• Haematopoiesis
• Haematological malignancy and leukaemia
• Cellular signal transduction
Introduction (cont’d)

Other topics covered in this slide module

• Epidemiology of CML
• Cytogenetics and molecular biology of CML
• Clinical presentation and natural history of CML
• Therapeutic options for CML
Haematopoiesis: Blood Cell Lineages

- Haematopoiesis: process by which blood-cell lineages are produced by bone marrow
- WBCs (white blood cells, or leukocytes) subdivided into
 - Myeloid lineages
 - Lymphoid lineages
- Granulocytes massively expanded in CML

Diagram reproduced with permission from W.H. Freeman Company, New York, NY, USA.
Stem Cells and Haematopoietic Differentiation

- Haematopoietic stem cells capable of
 - Self-renewal
 - Differentiation
- Differentiation and proliferation controlled by molecular signals
 - Contact with stromal cells in bone marrow
 - Growth factors

Signal Transduction and Tyrosine Kinases

Haematological Malignancy and Leukaemia

- Haematological malignancies
 - Cancer of blood cells
 - Involves acquisition of growth advantage by single cell
 - Uncontrolled growth results in expansion of clonal population of cells
- Leukaemia: haematological malignancy in leukocyte cell lineage

Neoplastic transformations initiated by:
- Point mutation
- Chromosomal loss, duplication, or inappropriate recombination
- Loss of expression of a gene that inhibits cell proliferation or promotes apoptosis

Diagram courtesy of National Cancer Institute, USA.
Types of Leukaemia

- Leukaemia classified according to:
 - Cell lineage (myeloid or lymphoid)
 - Degree of terminal differentiation
- Acute (eg, AML, ALL)
 - Primitive progenitor cell with limited capacity for further maturation
 - Evolves rapidly, requires prompt intervention
- Chronic (eg, CML, CLL)
 - Primitive progenitor cell with capacity for further maturation
 - Generally progresses in indolent manner

ALL, acute lymphocytic leukaemia; AML, acute myeloid leukaemia; CLL, chronic lymphocytic leukaemia.
CML: Epidemiology

- Leukaemia accounts for ~3% of all cancers in humans1-3
 - Incidence: 5-10 cases per 100,000 population
- CML accounts for 15%-20% of all adult leukaemias4,5
 - Incidence: 1-2 cases per 100,000 population4,6
 - Occurs slightly more frequently in men than women (1.4-2.2:1)7
- Median patient age at diagnosis: 55-60 years7
- CML is rare in persons aged ≤19 years (~1-2 cases per million population)6
- CML was the first cancer to be shown to be caused by an underlying genetic abnormality8

CML Pathogenesis: Philadelphia (Ph) Chromosome

- CML first cancer demonstrated to have underlying genetic abnormality \(^1,2\)
 - Associated with Ph chromosome
- Result of translocation between chromosomes 9 and 22 \(^3\)
- Detected in \(~95\%\) of patients with CML \(^4\)

BCR-ABL Oncogene

- Ph chromosomal translocation splices 2 genetic segments in an abnormal hybrid\(^1\)
- *BCR* gene of chromosome 22 in continuity with *ABL* proto-oncogene of chromosome 9\(^1\)
- Hybrid *BCR-ABL* gene encodes a continuously activated BCR-ABL fusion protein\(^2\)
 - Drives leukaemic transformation, causing CML

Figure reprinted with permission from Goldman JM et al. *N Engl J Med.* 2003;349:1455.

BCR-ABL Tyrosine Kinase and Intracellular Signal Transduction

- BCR-ABL has tyrosine-kinase activity and participates in intracellular signal transduction\(^1\)
- Activity imparts growth advantage to leukaemic cells\(^2-4\)
 - Increased proliferation and cytokine-independent growth
 - Inhibition of apoptosis
 - Alteration of adhesion pathways

Figure reprinted with permission from Goldman JM et al. *N Engl J Med.* 2003;349:1457.

Clinical Presentation of Ph+ CML

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chronic</th>
<th>Accelerated</th>
<th>Blast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median duration prior to availability of imatinib therapy</td>
<td>5-6 years</td>
<td>6-9 months</td>
<td>3-6 months</td>
</tr>
<tr>
<td>WBC count</td>
<td>≥20 × 10⁹/L</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Blasts</td>
<td>0%</td>
<td>≥10%</td>
<td>≥30%</td>
</tr>
<tr>
<td>Basophils</td>
<td>↑</td>
<td>≥20%</td>
<td>–</td>
</tr>
<tr>
<td>Platelets</td>
<td>↑ or normal</td>
<td>↑ or ↓</td>
<td>↓</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>Myeloid hyperplasia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytogenetics</td>
<td>Ph+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCR-ABL</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Ph+, Philadelphia chromosome positive.

CML: Chronic Phase

- Majority (>80%) of cases of CML diagnosed in chronic phase
- Defined by
 - Elevated WBC count (≥20 × 10⁹/L)
 - Relative lack of blasts (<10% in peripheral blood and bone marrow)
- Prior to imatinib, median duration: 5-6 years
- Effect of imatinib on duration of chronic phase has yet to be quantified

CML: Accelerated Phase

- Second and intermediate phase in CML\(^1\)
- Defining criterion: ≥5% to ≥19% blast cells in blood or marrow\(^2,3\)
- Thrombocytopenia and progressive anaemia may mark onset\(^1,3\)
- Characterised by general worsening of symptoms\(^4\):
 - Fever of unknown origin
 - Bone pain
 - Symptoms related to splenomegaly or hepatomegaly
- Median duration (range): ~3-18 months\(^5\)

CML: Blast Crisis

- Final disease phase characterised by ≥20% to ≥30% blasts in peripheral blood or marrow1-3
- Increased symptomatology1
 - Fatigue related to progressive anaemia
 - Bleeding
 - Infectious complications
 - Lymphadenopathy
 - CNS dysfunction
- Phase is rapidly fatal, with median survival ranging from 3 to 12 months4

CNS, central nervous system.

2006 European LeukemiaNet Recommendations
Ph+ CML Treatment Response Definitions

Haematologic Response (HR)
- Platelets: <450 × 10⁹/L
- WBCC: <10 × 10⁹/L
- Differential without immature granulocytes and <5% basophils
- Nonpalpable spleen

Complete (CHR)

Cytogenetic Response (CyR)
- Complete (CCyR) Ph+ 0%
- Partial (PCyR) Ph+ 1%-35%
- Minor Ph+ 36%-65%
- Minimal Ph+ 66%-95%
- None Ph+ >95%

Molecular Response (MR)
[BCR-ABL to control gene ratio according to International Scale (IS)]
- Complete Transcripts nonquantifiable and nondetectable
- Major (MMR) ≤0.1%

Major = partial + complete

WBCC, white blood cell count.
*Standardised baseline represents 100% on IS; 0.1% = 3-log reduction from standard baseline.
2006 European LeukemiaNet Recommendations for Monitoring Response

<table>
<thead>
<tr>
<th></th>
<th>Haematologic Response(^1)</th>
<th>Cytogenetic Response(^1)</th>
<th>Molecular Response(^2)</th>
</tr>
</thead>
</table>
| **Frequency** | • Every 2 weeks until a complete response has been achieved and confirmed
 • Every 3 months unless otherwise required | • Every 6 months until a complete response has been achieved and confirmed
 • Then every 12 months | • Every 3 months |
| **Methods** | • Complete blood count (CBC) with differential | • Conventional cytogenetic examination
 • FISH (only before treatment) | • RQ-PCR |

FISH, fluorescence in situ hybridisation; RQ-PCR, reverse transcription quantitative polymerase chain reaction.

Molecular Response

Decreasing residual leukaemia

BCR-ABL/ABL Ratio, %

0

0

1

0.1

0.01

0.001

10

100

Leukocytosis

Ph+

Ph− but RT-PCR positive

RT-PCR negative

Cure?

Total Number of Leukemia Cells

10^1

10^2

10^3

10^4

10^5

10^6

10^7

10^8

10^9

10^10

10^11

10^12

10^13

Reproduced with permission from Goldman J. *Curr Opin Hematol.* 2004;12:34.

Ph−, Philadelphia chromosome negative; RT-PCR, reverse transcription polymerase chain reaction.

2006 European LeukemiaNet Recommendations: Criteria for Satisfactory Response to Imatinib Treatment

Treatment Failure
- **3 months**
 - No HR
 - <CHR
 - No CyR
- **6 months**
 - <CHR
 - No CyR
- **12 months**
 - <PCyR
 - <CCyR
- **18 months**
 - <CCyR
- **At any time**
 - Loss of CHR
 - Loss of CCyR
 - Mutation with a high level of insensitivity to IM

Suboptimal Response
- **3 months**
 - <CHR
- **6 months**
 - <PCyR
- **12 months**
 - <CCyR
- **18 months**
 - <MMR
- **At any time**
 - ACA in Ph+ cells
 - Loss of MMoIR
 - Mutation with a low level of insensitivity to IM

Warnings
- High risk
- Del 9q+
- ACA in Ph+ cells

At diagnosis
- <MMR

12 months
- <MMR

At any time
- Any rise in transcript level
- Other chromosomal abnormalities in Ph- cells

ACA: additional chromosome abnormalities; CCyR: complete cytogenetic response; CyR: cytogenetic response; CHR: complete haematological response; HR: haematological response; MMR: major molecular response; PCyR: partial cytogenetic response.

*To be confirmed on 2 occasions, unless associated with progression to AP/BC. †To be confirmed on 2 occasions, unless associated with CHR loss or progression to AP/BC. ‡Mutations need to be interpreted within clinical context. §To be confirmed on 2 occasions, unless associated with CHR or CCyR loss.

Therapeutic Options for CML

- Imatinib current recommendations
 - US NCCN clinical practice guidelines: emphasise the use of SCT and imatinib¹
 - European LeukemiaNet recommendations: imatinib is the preferred initial treatment for most patients with newly diagnosed chronic-phase CML²

- Allogeneic SCT
- IFN-α
- Chemotherapy with hydroxyurea or busulphan
- Second-generation TKIs (when imatinib resistance/intolerance is seen)

IFN-α, interferon alpha; NCCN, National Comprehensive Cancer Network; SCT, stem-cell transplantation; TKIs, tyrosine kinase inhibitors.

Response to Imatinib in Patients With Chronic-Phase CML

Failure
- Imatinib treatment at the current dose is no longer appropriate
- Dose escalation or other treatments are recommended

Suboptimal response
- Continuation of imatinib treatment may still have a substantial benefit
- Long-term outcome of the treatment not likely to be as favourable

Warnings
- Standard dose of imatinib may not be the best option
- “Warnings” are flexible and don’t necessarily mean action needs to be taken
- More careful monitoring is required
- Dose escalation or other treatments are recommended

Chronic-Phase CML: European Treatment Recommendations

Imatinib 400 mg daily is the preferred initial treatment for most patients with newly diagnosed chronic-phase CML.

<table>
<thead>
<tr>
<th>Response to Imatinib</th>
<th>Treatment Recommendations*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suboptimal response</td>
<td>• First choice: imatinib dose escalation to 600 or 800 mg daily</td>
</tr>
<tr>
<td></td>
<td>• AlloHSCT</td>
</tr>
<tr>
<td>Failure</td>
<td>• Imatinib dose escalation to 600 or 800 mg daily</td>
</tr>
<tr>
<td></td>
<td>• AlloHSCT</td>
</tr>
</tbody>
</table>

*When other treatment options are not available, continuation of imatinib treatment or hydroxyurea should be considered.

alloHSCT, allogeneic haematopoietic stem-cell transplantation.

Chronic-Phase CML: Treatment Recommendations

<table>
<thead>
<tr>
<th>Response to Imatinib</th>
<th>Treatment Recommendations*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warnings</td>
<td>• Standard treatment: 400 mg daily imatinib</td>
</tr>
<tr>
<td></td>
<td>• Dose escalation, alloHSCT, or investigational agents</td>
</tr>
<tr>
<td>Intolerance or toxicity</td>
<td>• AlloHSCT*</td>
</tr>
<tr>
<td></td>
<td>• rIFN-α ± LDAC*</td>
</tr>
</tbody>
</table>

*Must be weighed against investigational trials of new agents.

rIFN, recombinant interferon; LDAC, low dose arabinosyl cytosine.

Event-Free Survival and Survival Without AP/BC on First-Line Imatinib

Progression events:
- 6.3% AP/BC
- 5.1% loss of MCR
- 2.5% loss of CHR
- 1.6% CML-unrelated deaths

Estimated rate at 60 months (with 95% CI)
- Survival without AP/BC: 93% (90-96)
- EFS: 83% (80-87)

Months Since Randomisation

AP, accelerated phase; BC, blast crisis; EFS, event-free survival.
Survival Rates for Stem Cell Transplantation

- First chronic phase (n = 1903)
- Accelerated and second chronic phase (n = 744)
- Blastic phase (n = 159)

P = 0.0001

Years After Transplant

% Survival

National Marrow Donor Program overview slide presentation.
A Minority of Patients Treated With IFN-α in Early Chronic-Phase CML Achieve CCyR

- CyR correlates with prolonged chronic-phase duration and survival
- At doses that induce CyR, IFN-α therapy is associated with issues of tolerability and side effects

Chemotherapy: Hydroxyurea and Busulphan Are Palliative for Symptoms of CML

- IFN-α ($n = 133$) median survival 66.0 months
- Hydroxyurea ($n = 194$) median survival 56.2 months
- Busulphan ($n = 186$) median survival 45.4 months

IFN-α vs busulphan: $P = 0.008$

Adapted with permission from Hehlmann R et al. Blood. 1994;84:4064-4077.
Imatinib Treatment in CML: US Recommendations

- HSCT candidate
 - Donor available and prefers HSCT
 - HSCT
 - No donor available or Declined HSCT
- Not HSCT candidate
 - Imatinib 400 mg PO daily
 - 3-month evaluation
 - Not in haematological remission, or
 - In haematological relapse
 - Dasatinib and HSCT, or
 - Clinical trial
 - Haematological remission
 - Continue imatinib

HSCT, haematopoietic stem-cell transplantation.
Imatinib Treatment in CML: US Recommendations (cont’d)

- Major or minor CyR:
 - Continue same dose or increase to maximum of 600-800 mg

- 6-month evaluation:
 - No CyR:
 - Increase dose of imatinib to 600-800 mg, or
 - Dasatinib, or
 - Clinical trial, or
 - HSCT

- 12-month evaluation:
 - Complete CyR:
 - Continue imatinib
 - Partial CyR:
 - Increase dose to maximum of 600-800 mg or
 - Continue same dose
 - Minor or no CyR:
 - Dasatinib, or
 - Clinical trial, or
 - HSCT

CyR, cytogenetic response;
Imatinib Treatment in CML: US Recommendations (cont’d)

- Complete CyR → Continue imatinib
- 18-month evaluation
 - Partial CyR Minor or no CyR
 - Increase dose to maximum of 600-800 mg, or
 - Dasatinib, or
 - HSCT, or
 - Clinical trial

Summary and Conclusions

- **CML**
 - Accounts for 15%-20% of all adult leukaemias
 - Ph chromosome detected in ~95% of patients with CML

- **Ph chromosome**
 - Translocation of 2 segments – t(9;22) – resulting in an abnormal hybrid BCR-ABL oncogene
 - Encodes constitutively active BCR-ABL protein-tyrosine kinase
 - BCR-ABL activity drives development of CML
Summary and Conclusions (cont’d)

- CML diagnosed in all phases on basis of common symptoms, signs, and laboratory findings
- Goal of therapy: stabilise blood counts and achieve haematological and cytogenetic response
- Overall goal: complete molecular response
 - No BCR-ABL transcripts detected in peripheral blood by quantitative RT-PCR
Summary and Conclusions (cont’d)

- Imatinib is the standard of care for CML in all phases
 - Demonstrated to be well tolerated in all studies
 - Improved efficacy in comparison with previous systemic therapies
- Other treatment options for CML
 - Allogeneic SCT
 - IFN-α
 - Chemotherapy with hydroxyurea or busulphan
 - Second-generation tyrosine kinase inhibitors